Learning Methods to Generate Good Plans: Integrating HTN Learning and Reinforcement Learning

نویسندگان

  • Chad Hogg
  • Ugur Kuter
  • Hector Muñoz-Avila
چکیده

We consider how to learn Hierarchical Task Networks (HTNs) for planning problems in which both the quality of solution plans generated by the HTNs and the speed at which those plans are found is important. We describe an integration of HTN Learning with Reinforcement Learning to both learn methods by analyzing semantic annotations on tasks and to produce estimates of the expected values of the learned methods by performing Monte Carlo updates. We performed an experiment in which plan quality was inversely related to plan length. In two planning domains, we evaluated the planning performance of the learned methods in comparison to two state-of-the-art satisficing classical planners, FASTFORWARD and SGPLAN6, and one optimal planner, HSPF . The results demonstrate that a greedy HTN planner using the learned methods was able to generate higher quality solutions than SGPLAN6 in both domains and FASTFORWARD in one. Our planner, FASTFORWARD, and SGPLAN6 ran in similar time, while HSPF was exponentially slower.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Probabilistic Hierarchical Task Networks to Capture User Preferences

While much work on learning in planning focused on learning domain physics (i.e., action models), and search control knowledge, little attention has been paid towards learning user preferences on desirable plans. Hierarchical task networks (HTN) are known to provide an effective way to encode user prescriptions about what constitute good plans. However, manual construction of these methods is c...

متن کامل

Survey of effective factors on learning motivation of clinical students and suggesting the appropriate methods for reinforcement the learning motivation from the viewpoints of nursing and midwifery faculty, Tabriz University of Medical Sciences 2002.

Introduction. Motives are the powerful force in process of education– learning, so that the richest and best training plans and structured education are not effective if the lack of motivation existed. In spite of the fact that the success of teacher depends on the learning motivation of students, then it is necessary for teachers to know the effective methods for motivating the students and t...

متن کامل

Application of Learning Theories in Clinical Education

Introduction: The purpose of education is learning. Several theories have been raised about learning, which have tried to explain how learning occurs. They help teachers to choose teaching methods, prepare learning environment and determine students' activities. Given the importance of learning theories in education, this study aimed to review application of learning theories in nursing educati...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Abstract MDP Reward Shaping for Multi-Agent Reinforcement Learning

MDP Reward Shaping for Multi-Agent Reinforcement Learning Kyriakos Efthymiadis, Sam Devlin and Daniel Kudenko Department of Computer Science, The University of York, UK Abstract. Reward shaping has been shown to significantly improve an agent’s performance in reinforcement learning. As attention is shifting from tabula-rasa approaches to methods where some heuristic domain knowledge can be give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010